Translate This!

Showing posts with label ndt is awesome. Show all posts
Showing posts with label ndt is awesome. Show all posts

Monday, January 7, 2013

Diving in Head First, or Equations I Did Not Miss Thee

Backtracking a bit to the beginning of my reintroduction to algebra. I can't get any work done on weekends.


With great enthusiasm and apprehension I opened Idiot's Guide to chapter four, the first appearance of basic equations. Surely I could start here, right? I flipped to the end for a test problem.


Solve the equation 9x + 3y = 5 for y


Perhaps the time honored adage "begin at the beginning" was in order. Back to pre-algebra.



Chapter one was filled with dusty concepts.

Mathematical classification systems: Both books went through the whole number hierarchy, but Everything had a Venn diagram nightmare implying all numbers were real numbers. Idiot's Guide defined real numbers as "all rational and irrational numbers" but didn't comment on the existence of "unreal" numbers. Thankfully there is now Google to tell me the counterpart to real numbers is complex numbers. It will be a hot minute before I feel like dealing with i.

Absolute value: Totally forgot about this. Whatever is inside the lines will be positive. Okay.

Associative and commutative properties: Order doesn't matter in addition and multiplication. One can cheat subtraction by changing 5 - 7 to (-7) + 5.

Identity and inverse properties: Adding 0 and multiplying by 1 do nothing. Adding the inverse negative gets 0, multiplying by the reciprocal gets 1. Forgot the fancy names but did remember the concept.



Chapter two was a skim through. All about fractions. Never had a problem with them. I did have to re-read the paragraph on division (multiply by the reciprocal). I wish I'd remembered that two weeks ago when I was struggling to divide 2/3 by 2 in my head. Yes, I felt dumb when .3333... popped up on the calculator. Very, very dumb.



Chapter three had the first appearance of the dreaded variable x. With exponents attached. Real and complex life awaited me, so I closed the book for the day.







The next day I took a deep breath and went back to chapter three. Idiot's Guide puts variables in a cross-disciplinary form I wish somebody had told me at the beginning.

Variables are pronouns.

Variables are pronouns!

Mind blown.

Does this make numbers nouns, operations verbs, and coefficients adjectives? Hold on, this metaphor is getting way more involved than I want it to. For now. Give me six weeks and I'll come up with a way to diagram a (very simple) math problem like a sentence. Or I'll Google around and find a meme where someone else did it. I can't be the first person to have this thought.

The rest of the chapter didn't have such strong epiphanies. Exponents were familiar but rusty.

  • Add powers when multiplying
  • Subtract powers when dividing
  • Multiply exponents when the exponential expression is raised to another another power
  • Negative exponents are considered bad grammar and must be written in reciprocal form.
Scientific notation: Positive exponents = Big number. Negative exponents = small number.

Distributive Property: This was where I got myself in trouble a lot in Algebra I...and II...and Precal. It's a wonder now I even made it so far in math. 5(x + 1) = 5x + 5 not 5x + 1. I now rewrite that expression as (5)(x) + (5)(1) in my work so I don't keep making that mistake.

Order of Operations: I sort of remembered it but sort of didn't. Parentheses first? Yup, still got it! Exponents? Uh, yeah sure. That totally came next. I did remember multiplication and division came before addition and subtraction, however by now I'd fallen into a very common trap that you do the multiplication and division in the order you encounter them, not all the multiplication first followed by all the division. I'm sure I knew this when I was actually in math class. Now not so much.

Monday, December 31, 2012

Why I Decided to Revisit Algebra

There are lots of reasons, but the ones that gave me the biggest kick in the pants were the YouTube channel on Nintendo Wii and Dr. Neil deGrasse Tyson.

Thanks to the YouTube channel I could watch Dr. Tyson lecture on things from trivial to deep from the comfort of my couch. His love of the universe and science education is infectious. After a month of Tyson lectures I wanted to read some books on basic physics. I went to the public library, opened a book on basic physics, and prepared to expand my knowledge of the universe. There was only one teeny tiny infinitesimal problem. A minor detail, really

Math is an integral part of physics.

I do not have a good relationship with math.

To understand physics, the world, and the best memes on Facebook's I f*cking love science would mean going alllllll the way back to Algebra I. Did I really need to know the answers to the universe so badly? Was I willing to go back to xy, polynomials, graph paper, the evil f(x), and some of the most miserable academic memories of my life? Was I this much of a nerd?

The answer to every question was yes. Dr. Tyson's scientific fever still has hold on me. He transmits it via StarTalk. One day I'll either thank him for starting this journey or send him some non-Pluto hate mail.

I left the library with two algebra books: The Everything Guide to Algebra (Christopher Monahan, published by Adams Media) and The Complete Idiot's Guide to Algebra, First Edition (W. Michael Kelley, published by Alpha Books). So far Idiot's Guide is the hands down winner. Everything reads like stereo instructions. Monahan covers in one chapter what Kelley splits into three. However Idiot's Guide is light on practice problems despite its "A Plethora of Practice" chapter. Kelley's target audience is probably middle and high school students with an algebra textbook at hand rather than thirtysomething nerds looking to increase their geek cred. Right now I'm keeping Everything as a back up for practice problems.

After a week with these books I feel hopeful. Over the next couple of days I'll post about getting my feet wet, my stupid math mistakes, and how some of those rules my eighth grade math teacher harped on turned out not to be so important after all.